Frequency Shaped Linear Optimal Control Wxth Transfer Function Riccati Equations*
نویسندگان
چکیده
Standard linear optimal control theory is generalized using a spectral factorization approach to elucidate some effects of frequency shaped performance indices. The theory discusses robustness results which parallel those of standard optimal control design. Matrix transfer function Riccati equations emerge as a conceptual tool associated with the frequency shaped optimal designs.
منابع مشابه
Riccati equations and optimal control of well-posed linear systems
We generalize the classical theory on algebraic Riccati equations and optimization to infinite-dimensional well-posed linear systems, thus completing the work of George Weiss, Olof Staffans and others. We show that the optimal control is given by the stabilizing solution of an integral Riccati equation. If the input operator is not maximally unbounded, then this integral Riccati equation is equ...
متن کاملRobust frequency-shaped LQ control
Certain frequency-shaped standard linear quadratic (LQ) controllers involving state feedback have attractive loop robustness properties. These robustness properties may vanish in passing to an output feedback scheme, as when state estimates are used instead of states. The known exception to date is when the plants are minimum phase and state estimation with loop recovery is used, as in LQG/LTR ...
متن کاملOptimal integrated passive/active design of the suspension system using iteration on the Lyapunov equations
In this paper, an iterative technique is proposed to solve linear integrated active/passive design problems. The optimality of active and passive parts leads to the nonlinear algebraic Riccati equation due to the active parameters and some associated additional Lyapunov equations due to the passive parameters. Rather than the solution of the nonlinear algebraic Riccati equation, it is proposed ...
متن کاملSolvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls
The optimal control problem in a finite time horizon with an indefinite quadratic cost function for a linear system subject to multiplicative noise on both the state and control can be solved via a constrained matrix differential Riccati equation. In this paper, we provide general necessary and sufficient conditions for the solvability of this generalized differential Riccati equation. Furtherm...
متن کاملLinear Quadratic Gaussian Balancing for Discrete-Time Infinite-Dimensional Linear Systems
In this paper, we study the existence of linear quadratic Gaussian (LQG)–balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show that the control (filter) Riccati equation has a nonnegative self-adjoint solution if and only if...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1983